题目内容
【题目】已知圆O:x2+y2=2,直线.l:y=kx-2.
(1)若直线l与圆O相切,求k的值;
(2)若直线l与圆O交于不同的两点A,B,当∠AOB为锐角时,求k的取值范围;
(3)若,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点为C,D,探究:直线CD是否过定点.
【答案】(1)k=±1;(2)(-)∪(1,);(3)直线CD过定点().
【解析】
(1)由直线l与圆O相切,得圆心O(0,0)到直线l的距离等于半径r=,由此能求出k.
(2)设A,B的坐标分别为(x1,y1),(x2,y2),将直线l:y=kx-2代入x2+y2=2,得(1+k2)x2-4kx+2=0,由此利用根的判断式、向量的数量积公式能求出k的取值范围.
(3)由题意知O,P,C,D四点共圆且在以OP为直径的圆上,设P(t,),其方程为,C,D在圆O:x2+y2=2上,求出直线CD:(x+)t-2y-2=0,联立方程组能求出直线CD过定点().
解:(1)∵圆O:x2+y2=2,直线l:y=kx-2.直线l与圆O相切,
∴圆心O(0,0)到直线l的距离等于半径r=,
即d==,
解得k=±1.
(2)设A,B的坐标分别为(x1,y1),(x2,y2),
将直线l:y=kx-2代入x2+y2=2,整理,得(1+k2)x2-4kx+2=0,
∴,,
△=(-4k)2-8(1+k2)>0,即k2>1,
当∠AOB为锐角时,
=x1x2+y1y2=x1x2+(kx1-2)(kx2-2)
=
=>0,
解得k2<3,
又k2>1,∴-或1<k<.
故k的取值范围为(-)∪(1,).
(3)由题意知O,P,C,D四点共圆且在以OP为直径的圆上,
设P(t,),其方程为x(x-t)+y(y)=0,
∴,
又C,D在圆O:x2+y2=2上,
两圆作差得lCD:tx+,即(x+)t-2y-2=0,
由,得,
∴直线CD过定点().