题目内容
【题目】已知不共线向量,满足||=3,||=2,(23)(2)=20.
(1)求;
(2)是否存在实数λ,使λ与2共线?
(3)若(k2)⊥(),求实数k的值.
【答案】(1)1;(2)存在,;(3)或
【解析】
(1)利用向量运算法则展开计算得到答案.
(2)假设存在实数λ,使λ与2共线,则,计算得到答案.
(3)计算(k2)()=0,展开计算得到答案.
(1)向量,满足||=3,||=2,(23)(2)=20,
所以4434×9﹣43×4=20,解得1;
(2)假设存在实数λ,使λ与2共线,则,
故,.
即存在λ,使得λ与2共线;
(3)若(k2)⊥(),则(k2)()=0,
即k(2﹣k2)2k0,所以9k+(2﹣k2)×1﹣2k4=0,
整理得k2﹣k﹣2=0,解得k=﹣1或k=2.
练习册系列答案
相关题目
【题目】某市电视台为了宣传举办问答活动,随机对该市15~65岁的人群抽样了人,回答问题统计结果如图表所示.
组号 | 分组 | 回答正确 | 回答正确的人数 |
第1组 | 5 | 0.5 | |
第2组 | 0.9 | ||
第3组 | 27 | ||
第4组 | 0.36 | ||
第5组 | 3 |
(Ⅰ) 分别求出的值;
(Ⅱ) 从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?
(Ⅲ) 在(Ⅱ)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.