题目内容
【题目】上周某校高三年级学生参加了数学测试,年级组织任课教师对这次考试进行成绩分析现从中随机选取了40名学生的成绩作为样本,已知这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组;第二组;……;第六组,并据此绘制了如图所示的频率分布直方图.
(1)估计这次月考数学成绩的平均分和众数;
(2)从成绩大于等于80分的学生中随机选2名,求至少有1名学生的成绩在区间内的概率.
【答案】(1)平均分68,众数65;(2)
【解析】
(1)先求得成绩在区间内的频率,然后根据平均数的计算公式,计算出平均分,利用最高的小长方形求得众数.
(2)先求得、的人数,然后用列举法,结合古典概型概率计算公式,计算出所求概率.
(1)因各组的频率之和为1,所以成绩在区间内的频率为
.
所以平均分,
众数的估计值是65.
(2)设表示事件“在成绩大于等于80分的学生中随机选2名,至少有1名学生的成绩在区间内”,
由题意可知成绩在区间内的学生所选取的有:人,
记这4名学生分别为,,,,
成绩在区间内的学生有人,记这2名学生分别为,,
则从这6人中任选2人的基本事件为:,,,,,,,,,,,,,,,共15种,
事件“至少有1名学生的成绩在区间内”的可能结果为:,,,,
,,,,,共9种,所以.
故所求事件的概率为:.
【题目】某市A,B,C,D四所中学报名参加某高校2015年自主招生考试的学生人数如下表所示:
中学 | A | B | C | D |
人数 | 40 | 30 | 10 | 20 |
该市教委为了解参加考试的学生的学习状况,采用分层抽样的方法从四所中学报名参加考试的学生中随机抽取50名参加问卷调查.则A,B,C,D四所中学抽取的学生人数分别为( )
A.15,20,10,5B.15,20,5,10
C.20,15,10,5D.20,15,5,10