题目内容
【题目】已知实数,设函数
(1)当时,求函数的单调区间;
(2)对任意均有 求的取值范围.
注:为自然对数的底数.
【答案】(1)的单调递增区间是,单调递减区间是;(2).
【解析】
(1)首先求得导函数的解析式,然后结合函数的解析式确定函数的单调区间即可.
(2)由题意首先由函数在特殊点的函数值得到a的取值范围,然后证明所得的范围满足题意即可.
(1)当时,,函数的定义域为,且:
,
因此函数的单调递增区间是,单调递减区间是.
(2)构造函数,
注意到:,
注意到时恒成立,满足;
当时,,不合题意,
且,解得:,故.
下面证明刚好是满足题意的实数a的取值范围.
分类讨论:
(a)当时,,
令,则:
,
易知,则函数单调递减,,满足题意.
(b)当时,等价于,
左侧是关于a的开口向下的二次函数,
其判别式,
令,注意到当时,,
于是在上单调递增,而,
于是当时命题成立,
而当时,此时的对称轴为随着递增,
于是对称轴在的右侧,而成立,(不等式等价于).
因此.
综上可得:实数a的取值范围是.
练习册系列答案
相关题目