题目内容
【题目】某市一所医院在某时间段为发烧超过38的病人特设发热门诊,该门诊记录了连续5天昼夜温差()与就诊人数的资料:
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
昼夜温差() | 8 | 10 | 13 | 12 | 7 |
就诊人数(人) | 18 | 25 | 28 | 27 | 17 |
(1)求的相关系数,并说明昼夜温差()与就诊人数具有很强的线性相关关系.
(2)求就诊人数(人)关于出昼夜温差()的线性回归方程,预测昼夜温差为9时的就诊人数.
附:样本的相关系数为,当时认为两个变量有很强的线性相关关系.
回归直线方程为,其中,.
参考数据:,
【答案】(1),有很强的线性相关关系;(2)可以预测昼夜温差为时的就诊人数大约为21人左右.
【解析】
(1)根据已知数据,先求出,然后根据相关系数公式求出与比较,即可得出结果;
(2)根据公式分别求出,,即可求出诊人数(人)关于出昼夜温差()的线性回归方程,再将代入,可求出,从而可预测昼夜温差为9时的就诊人数.
(1),,
,
,昼夜温差()与就诊人数具有很强的线性相关关系.
(2)因为,
,
所以,,所以,
当时,,
由此可以预测昼夜温差为时的就诊人数大约为21人左右.
【题目】某种设备随着使用年限的增加,每年的维护费相应增加现对一批该设备进行调查,得到这批设备自购入使用之日起,前5年平均每台设备每年的维护费用大致如下表:
年份(年) | 1 | 2 | 3 | 4 | 5 |
维护费(万元) | 1.1 | 1.6 | 2 | 2.5 | 2.8 |
(1)在这5年中随机抽取两年,求平均每台设备每年的维护费用至少有1年多于2万元的概率;
(2)求关于的线性回归方程.若该设备的价格是每台16万元,你认为应该使用满五年换一次设备,还是应该使用满八年换一次设备?请说明理由.
参考公式:用最小二乘法求线性回归方程的系数公式.
【题目】某商场为了了解顾客的购物信息,随机在商场收集了位顾客购物的相关数据如下表:
一次购物款(单位:元) | |||||
顾客人数 |
统计结果显示位顾客中购物款不低于元的顾客占,该商场每日大约有名顾客,为了增加商场销售额度,对一次购物不低于元的顾客发放纪念品.
(Ⅰ)试确定, 的值,并估计每日应准备纪念品的数量;
(Ⅱ)现有人前去该商场购物,求获得纪念品的数量的分布列与数学期望.