题目内容
【题目】甲、乙两人2013-2017这五年的年度体检的血压值的折线图如图所示.
(1)根据散点图,直接判断甲、乙这五年年度体检的血压值谁的波动更大,并求波动更大者的方差;
(2)根据乙这五年年度体检血压值的数据,求年度体检血压值关于年份的线性回归方程,并据此估计乙在2018年年度体检的血压值.
(附:,)
【答案】(1)见解析;(2)见解析.
【解析】
(1)由图像可知,甲的波动更大,利用图像所给数据和方差的计算公式计算得方差的值.(2)将数据代入回归直线方程计算公式,计算出回归直线方程,并令,求得年度的预测值.
(1)甲的波动更大.
甲这五年年度体检的血压值的平均值为,
其方差为.
(2)∵,,
∴,
.
故关于的线性回归方程为.
当时,,
故可估计乙在2018年年度体检的血压值为118.
【题目】某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.
(I)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.
(II)在高二的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?
非手机迷 | 手机迷 | 合计 | |
男 | |||
女 | |||
合计 |
附:随机变量(其中为样本总量).
参考数据 | 0.15 | 0.10 | 0.05 | 0.025 | |
span>2.072 | 2.706 | 3.841 | 5.024 |
【题目】今天你低碳了吗?近来国内网站流行一种名为“碳排放计算器”的软件,人们可以由此计算出自己每天的碳排放量,如家居用电的碳排放量(千克)耗电度数,汽车的碳排放量(千克)油耗公升数等,某班同学利用寒假在两个小区逐户进行了一次生活习惯是否符合低碳观念的调查.若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,这二族人数占各自小区总人数的比例数据如下:
小区 | 低碳族 | 非低碳族 | 小区 | 低碳族 | 非低碳族 | |
比例 | 1/2 | 1/2 | 比例 | 4/5 | 1/5 |
(1)如果甲、乙来自小区,丙、丁来自小区,求这4人中恰好有两人是低碳族的概率;
(2)小区经过大力宣传,每周非低碳中有20%的人加入到低碳族的行列,如果两周后随机地从小区中任选5个人,记表示5个人中的低碳族人数,求和