题目内容
【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分图象如图所示, (Ⅰ)求函数的解析式;
(Ⅱ)求函数的单调区间.
【答案】解:(Ⅰ)由图象可知A=2, 由于: ,
所以:ω=2;
所以f(x)=2sin(2x+φ),
又因为:图象的一个最高点为 ,
所以: ,解得 ,
又|φ|<π,∴ .
所以: .
(Ⅱ) 由 ,得 ,
由 ,得 ,
所以,f(x)的单调增区间为 ,
f(x)的单调减区间为
【解析】(Ⅰ)由图象可得A,由周期公式可得ω,代入点计算可得φ值,进而可得函数的解析式.(Ⅱ) 由 , ,即可解得f(x)的单调区间.
【考点精析】掌握正弦函数的单调性是解答本题的根本,需要知道正弦函数的单调性:在上是增函数;在上是减函数.
【题目】某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
附表:
P(K2≥k) | 0.100 | 0.010 | 0.001 |
k | 2.706 | 6.635 | 10.828 |
K2= ,(其中n=a+b+c+d)
(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的频率.
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
生产能手 | 非生产能手 | 合计 | |
25周岁以上组 | |||
25周岁以下组 | |||
合计 |