题目内容

【题目】如图,四棱锥P﹣ABCD的底面是边长为a的正方形,PB⊥平面ABCD,M、N分别是AB、PC的中点.

(1)求证:MN∥平面PAB;
(2)若平面PDA与平面ABCD成60°的二面角,求该四棱锥的体积.

【答案】
(1)证明:取PB的中点O,连接ON,OA,

∵O,N分别是PB,PC的中点,

∴ON∥BC,ON= BC

又AD∥BC,AM= AD,

∴ON∥AM,ON=AM.

∴四边形MNOA为平行四边形.

∴MN∥AO

而MN平面PAB,AO平面PAB

∴MN∥平面PAB


(2)解:∵PB⊥平面ABCD,AD平面ABCD,

∴PB⊥AD,

又AB⊥AD,AB∩PB=B,

∴AD⊥面PAB,

∴AD⊥PA.

∴∠PAB为平面PDA与平面ABCD成二面角的平面角,

∴∠PAB=60°,

在RT△PBA中,PB=tan∠PABAB= a,

∴VPABCD= SABCD×PB= ×a2× a=


【解析】(1)取PB的中点O,连接ON,OA,通过证明四边形MNOA为平行四边形.得出MN∥AO,根据判定定理即可证明.(2)容易得出∠PAB为平面PDA与平面ABCD成二面角的平面角,在RT△PBA中,求出椎体的高PB,利用锥体体积公式计算即可.
【考点精析】解答此题的关键在于理解直线与平面平行的判定的相关知识,掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网