题目内容

【题目】设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是(
A.[1﹣ ,1+ ]
B.(﹣∞,1﹣ ]∪[1+ ,+∞)
C.[2﹣2 ,2+2 ]
D.(﹣∞,2﹣2 ]∪[2+2 ,+∞)

【答案】D
【解析】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,
∵直线(m+1)x+(n+1)y﹣2=0与圆相切,
∴圆心到直线的距离d= =1,
整理得:m+n+1=mn≤
设m+n=x,则有x+1≤ ,即x2﹣4x﹣4≥0,
∵x2﹣4x﹣4=0的解为:x1=2+2 ,x2=2﹣2
∴不等式变形得:(x﹣2﹣2 )(x﹣2+2 )≥0,
解得:x≥2+2 或x≤2﹣2
则m+n的取值范围为(﹣∞,2﹣2 ]∪[2+2 ,+∞).
故选D

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网