题目内容
【题目】为了调查我市在校中学生参加体育运动的情况,从中随机抽取了16名男同学和14 名女同学,调查发现,男、女同学中分别有12人和6人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下列联表:
(2)根据列联表的独立性检验,能否在犯错误的概率不超过0.010的前提下认为性别与喜爱运动有关?
(3)将以上统计结果中的频率视作概率,从我市中学生中随机抽取3人,若其中喜爱运动的人数为,求的分布列和均值.
参考数据:
【答案】(1)见解析;(2)见解析;(3)见解析
【解析】分析:(1)本题是一个简单的数字的运算,根据a,b,c,d的已知和未知的结果,做出空格处的结果;(2)假设是否喜爱运动与性别无关,由已知数据可求得观测值,把求得的观测值同临界值进行比较,得到在犯错的概率不超过0.10的前提下不能判断喜爱运动与性别有关;(3)喜爱运动的人数为ξ,ξ的取值分别为0,1,2,3,结合变量对应的事件利用等可能事件的概率公式做出概率,写出分布列和期望.
详解:
(1)
(2)假设:是否喜爱运动与性别无关,由已知数据可求得,
因此,在犯错的概率不超过0.10的前提下不能判断喜爱运动与性别有关.
(3)统计结果中喜爱运动的中学生所占的频率为.
喜爱运动的人数为的取值分别为:0,1,2,3,则有:
喜爱运动的人数为的分布列为:
因为,所以喜爱运动的人数的值为.
【题目】2018年6月14日,第二十一届世界杯尼球赛在俄罗斯拉开了帷幕,某大学在二年级作了问卷调查,从该校二年级学生中抽取了人进行调查,其中女生中对足球运动有兴趣的占,而男生有人表示对足球运动没有兴趣.
(1)完成列联表,并回答能否有的把握认为“对足球是否有兴趣与性别有关”?
有兴趣 | 没有兴趣 | 合计 | |
男 | |||
女 | |||
合计 |
(2)若将频率视为概率,现再从该校二年级全体学生中,采用随机抽样的方法每饮抽取名学生,抽取次,记被抽取的名学生中对足球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列和数学期望.
附: