题目内容

4.若n是一个正数值,且n的个位数字,大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如135,148,567等),则能被2整除的“三位递增数”的个数为34(用数字作答).

分析 根据题意,由“三位递增数”分析可得n的三个数位中不能有0,且个位数字不能为2,而又要求“三位递增数”能被2整除,则其个位数字必须是4、6、8中的一个,则分3种情况讨论:①、当个位数字为4时,②、当个位数字为6时,③、当个位数字为8时;每种情况下只需在比个位数字小的数字中任取2个按从小到大的顺序排在百位、十位,由组合数公式每种情况下的“三位递增数”的个数,由分类计数原理计算可得答案.

解答 解:根据题意,对于“三位递增数”,要求n的个位数字,大于十位数字,十位数字大于百位数字,则n的三个数位中不能有0,且个位数字不能为2,
而又要求“三位递增数”能被2整除,则其个位数字必须是4、6、8中的一个,
则分3种情况讨论:
①、当个位数字为4时,只需在1、2、3这三个数字中任选2个,按从小到大的顺序排在百位、十位即可,
有C32=3种情况,
②、当个位数字为6时,只需在1、2、3、4、5这五个数字中任选2个,按从小到大的顺序排在百位、十位即可,
有C52=10种情况,
③、当个位数字为8时,只需在1、2、3、4、5、6、7这七个数字中任选2个,按从小到大的顺序排在百位、十位即可,
有C72=21种情况,
则共有3+10+21=34种情况,即有能被2整除的“三位递增数”的个数为34个;
故答案为:34.

点评 本题考查排列、组合的运用,解题的关键是认真分析题意,将原问题转化为排列、组合的问题,进而利用排列或组合公式分析.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网