题目内容
4.若n是一个正数值,且n的个位数字,大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如135,148,567等),则能被2整除的“三位递增数”的个数为34(用数字作答).分析 根据题意,由“三位递增数”分析可得n的三个数位中不能有0,且个位数字不能为2,而又要求“三位递增数”能被2整除,则其个位数字必须是4、6、8中的一个,则分3种情况讨论:①、当个位数字为4时,②、当个位数字为6时,③、当个位数字为8时;每种情况下只需在比个位数字小的数字中任取2个按从小到大的顺序排在百位、十位,由组合数公式每种情况下的“三位递增数”的个数,由分类计数原理计算可得答案.
解答 解:根据题意,对于“三位递增数”,要求n的个位数字,大于十位数字,十位数字大于百位数字,则n的三个数位中不能有0,且个位数字不能为2,
而又要求“三位递增数”能被2整除,则其个位数字必须是4、6、8中的一个,
则分3种情况讨论:
①、当个位数字为4时,只需在1、2、3这三个数字中任选2个,按从小到大的顺序排在百位、十位即可,
有C32=3种情况,
②、当个位数字为6时,只需在1、2、3、4、5这五个数字中任选2个,按从小到大的顺序排在百位、十位即可,
有C52=10种情况,
③、当个位数字为8时,只需在1、2、3、4、5、6、7这七个数字中任选2个,按从小到大的顺序排在百位、十位即可,
有C72=21种情况,
则共有3+10+21=34种情况,即有能被2整除的“三位递增数”的个数为34个;
故答案为:34.
点评 本题考查排列、组合的运用,解题的关键是认真分析题意,将原问题转化为排列、组合的问题,进而利用排列或组合公式分析.
练习册系列答案
相关题目
15.“正弦函数是奇函数,f(x)=sin(x2+2)是正弦函数,因此f(x)=sin(x2+2)是奇函数”.以上结论不正确的原因是( )
A. | 大前提不正确 | B. | 小前提不正确 | ||
C. | 推理形式不正确 | D. | 大、小前提都不正确 |
12.如图,一个子弹运动的轨迹是一个三次函数图象的一部分,则这个函数的解析式是( )
A. | y=-$\frac{1}{3}$x3+$\frac{5}{6}$x | B. | y=$\frac{1}{3}$x3-$\frac{11}{6}x$ | C. | y=$\frac{2}{3}{x}^{3}$-$\frac{19}{6}x$ | D. | y=$\frac{1}{16}{x}^{3}-\frac{3}{4}x$ |
9.已知cosα=$\frac{5}{13}$,α是第一象限角,则sin(π+α)的值为( )
A. | $\frac{5}{13}$ | B. | -$\frac{5}{13}$ | C. | $\frac{12}{13}$ | D. | -$\frac{12}{13}$ |
16.某中学调查了某班全部50名同学参加数学兴趣小组和物理兴趣小组的情况,数据如下表:(单位:人)
(Ⅰ)从该班随机选一名同学,求该同学至少参加上述一个兴趣小组的概率;
(Ⅱ)在既参加数学兴趣小组,又参加物理兴趣小组的7名同学中,有4名男同学A,B,C,D,3名女同学a,b,c,现从这4名男同学和3名女同学中各随机选1人,求A被选中且a未被选中的概率.
参加数学兴趣小组 | 不参加数学兴趣小组 | |
参加物理兴趣小组 | 7 | 10 |
不参加物理兴趣小组 | 7 | 26 |
(Ⅱ)在既参加数学兴趣小组,又参加物理兴趣小组的7名同学中,有4名男同学A,B,C,D,3名女同学a,b,c,现从这4名男同学和3名女同学中各随机选1人,求A被选中且a未被选中的概率.
13.已知i为虚数单位,则复数$\frac{1+2i}{2-i}$=( )
A. | i | B. | -i | C. | -$\frac{4}{5}$-$\frac{3}{5}$i | D. | -$\frac{4}{5}$+$\frac{3}{5}$i |