题目内容

5.已知直线l:x+2y=0,圆C:x2+y2-6x-2y-15=0,直线l被圆所截得的线段长为$4\sqrt{5}$.

分析 根据圆的方程找出圆心坐标和半径,过点A作AC⊥弦BD,可得C为BD的中点,根据勾股定理求出BC,即可求出弦长BD的长.

解答 解:过点A作AC⊥弦BD,垂足为C,连接AB,可得C为BD的中点.
由x2+y2-6x-2y-15=0,得(x-3)2+(y-1)2=25.
知圆心A为(3,1),r=5.
由点A(3,1)到直线x+2y=0的距离AC=$\frac{|3+2|}{\sqrt{5}}$=$\sqrt{5}$.
在直角三角形ABC中,AB=5,AC=$\sqrt{5}$,
根据勾股定理可得BC=$\sqrt{25-5}$=2$\sqrt{5}$,
则弦长BD=2BC=$4\sqrt{5}$.
故答案为:$4\sqrt{5}$.

点评 本题考查学生灵活运用垂径定理解决实际问题的能力,灵活运用点到直线的距离公式及勾股定理化简求值,会利用数形结合的数学思想解决数学问题,是一道综合题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网