题目内容
【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
直径/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率);①;
②;③.
评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级.
(2)将直径小于等于或直径大于的零件认为是次品.
(ⅰ)从设备的生产流水线上随意抽取2件零件,计算其中次品个数的数学期望;
(ⅱ)从样本中随意抽取2件零件,计算其中次品个数的数学期望.
【答案】(1)丙;(2)(ⅰ);(ⅱ).
【解析】
试题分析:(1)利用条件,可得设备的数据仅满足一个不等式,即可得出结论;(2)首先求得样本中次品数,(ⅰ)由题意可知,然后用数学期望公式求解即可;(ⅱ)首先确定的取值,然后分别求出相应的概率,由可求出其中次品个数的数学期望.
试题解析:(1)由题意知道:,
所以由图表知道:
所以该设备的性能为丙级别.
(2)由图表知道:直径小于或等于的零件有2件,大于的零件有4件共计6件
(i)从设备的生产流水线上任取一件,取到次品的概率为,
依题意,故.
(ii)从100件样品中任意抽取2件,次品数的可能取值为0,1,2
故.
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程和直线的倾斜角;
(2)设点,直线和曲线交于两点,求的值.
【题目】某老师对全班名学生学习积极性和参加社团活动情况进行调查,统计数据如下所示:
参加社团活动 | 不参加社团活动 | 合计 | |
学习积极性高 | |||
学习积极性一般 | |||
合计 |
(1)请把表格数据补充完整;
(2)若从不参加社团活动的人按照分层抽样的方法选取人,再从所选出的人中随机选取两人作为代表发言,求至少有一个学习积极性高的概率;
(3)运用独立性检验的思想方法分析:请你判断是否有的把握认为学生的学习积极性与参与社团活动由关系?
附: