题目内容
【题目】已知椭圆的右焦点为,原点为,椭圆的动弦过焦点且不垂直于坐标轴,弦的中点为,过且垂直于线段的直线交射线于点.
(1)证明:点在定直线上;
(2)当最大时,求的面积.
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)设所在直线为,联立方程组,得到,进而得到所在直线方程,再联立方程组,即可得到顶点的坐标.
(2)由(1)得点的坐标为,求得向量则,利用向量的夹角公式,求解的最小值,得到此时,求得,即可求得三角形的面积.
试题解析:
(1)显然椭圆的右焦点的坐标为,
设所在直线为:,且.
联立方程组:,得:;
其中,
点的坐标为所在直线方程为:.
所在的直线方程为:,
联立方程组:,得,
故点在定直线上;
(2)由(1)得:由得点的坐标为,且,
则,
,
(当且仅当不等式取等号),
若取得最小值时,最大,此时;
;
;
.
【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:
直径/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合计 |
件数 | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
经计算,样本的平均值,标准差,以频率值作为概率的估计值.
(Ⅰ)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率);①;
②;③.
评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级.
(2)将直径小于等于或直径大于的零件认为是次品.
(ⅰ)从设备的生产流水线上随意抽取2件零件,计算其中次品个数的数学期望;
(ⅱ)从样本中随意抽取2件零件,计算其中次品个数的数学期望.
【题目】响应“文化强国建设”号召,某市把社区图书阅览室建设增列为重要的民生工程.为了解市民阅读需求,随机抽取市民200人做调查,统计显示,男士喜欢阅读古典文学的有64人,不喜欢的有56人;女士喜欢阅读古典文学的有36人,不喜欢的有44人.
(1)能否在犯错误的概率不超过0.25的前提下认为喜欢阅读古典文学与性别有关系?
(2)为引导市民积极参与阅读,有关部门牵头举办市读书交流会,从这200人中筛选出5名男代表和4名代表,其中有3名男代表和2名女代表喜欢古典文学.现从这9名代表中任选3名男代表和2名女代表参加交流会,记为参加交流会的5人中喜欢古典文学的人数,求的分布列及数学期望.
附:,其中.
参考数据:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 |