题目内容

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,且满足cos2B﹣cos2C﹣sin2A=sinAsimB.
(1)求角C;
(2)向量 =(sinA,cosB), =(cosx,sinx),若函数f(x)= 的图象关于直线x= 对称,求角A,B.

【答案】
(1)解:△ABC中,cos2B﹣cos2C﹣sin2A=sinAsinB,

∴(1﹣sin2B)﹣(1﹣sin2C)﹣sin2A=sinAsinB,

∴sin2C﹣sin2B﹣sin2A=sinAsinB,

∴c2﹣b2﹣a2=ab,

∴cosC= = =﹣

又C∈(0,π),

∴C=


(2)解:向量 =(sinA,cosB), =(cosx,sinx),

∴函数f(x)= =sinAcosx+cosBsinx;

又f(x)的图象关于直线x= 对称,

∴f( +x)=f( ﹣x),

∴sinAcos( +x)+cosBsin( +x)=sinAcos( ﹣x)+cosBsin( ﹣x),

∴sinA[cos( +x)﹣cos( ﹣x)]+cosB[sin( +x)﹣sin( ﹣x)]=0,

∴﹣2sinAsin sinx+2cosBcos sinx=0,

∴2sinx(﹣sinAsin +cosBcos )=0;

又sinx≠0,∴sinAsin ﹣cosBcos =0,

又B= ﹣A,∴sinAsin ﹣cos( ﹣A)cos =0,

sinA﹣ cosA=0,

sin(A﹣ )=0,

∴sin(A﹣ )=0;

又A∈(0, ),

∴A﹣ ∈(﹣ ),

∴A﹣ =0,

∴A=

∴B= ﹣A=


【解析】(1)根据三角恒等变换和正弦、余弦定理化简等式,求出cosC的值,即得C的值;(2)由平面向量的数量积求出函数f(x),根据f(x)的图象关于直线x= 对称,得出f( +x)=f( ﹣x),利用三角恒等变换得出sinx(﹣sinAsin +cosBcos )=0;再由sinx≠0,A+B= ,求出A、B的值.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网