题目内容
已知某校在一次考试中,5名学生的数学和物理成绩如下表:
学生的编号i | 1 | 2 | 3 | 4 | 5 |
数学成绩x | 80 | 75 | 70 | 65 | 60 |
物理成绩y | 70 | 66 | 68 | 64 | 62 |
(Ⅱ)根据上表,利用最小二乘法,求出关于的线性回归方程,
其中
(III)利用(Ⅱ)中的线性回归方程,试估计数学90分的同学的物理成绩.(四舍五入到整数)
(Ⅰ)所以这五名学生的优秀率为40% ;(Ⅱ) ;(III)分.
解析试题分析:(Ⅰ)概率计算;(Ⅱ)利用最小二乘法求得数学、物理成绩的平均分,进而求得线性回归方程 (III)利用线性回归方程求值.
试题解析:(Ⅰ)这五名学生中共有2名数学成绩在70以上且物理成绩在65分以上
所以这五名学生的优秀率为40% 3分
(Ⅱ) 5分
7分
, 9分
所以, 10分
(III)试估计数学90分的同学的物理成绩为分.12分
考点:概率计算,最小二乘法求线性回归方程.
练习册系列答案
相关题目
气象部门提供了某地今年六月份(30天)的日最高气温的统计表如下:
日最高气温t (单位:℃) | t22℃ | 22℃<t28℃ | 28℃<t32℃ | ℃ |
天数 | 6 | 12 | |
某水果商根据多年的销售经验,六月份的日最高气温t (单位:℃)对西瓜的销售影响如下表:
日最高气温t (单位:℃) | t22℃ | 22℃<t28℃ | 28℃<t32℃ | ℃ |
日销售额(千元) | 2 | 5 | 6 | 8 |
(Ⅱ) 若视频率为概率,求六月份西瓜日销售额的期望和方差;
(Ⅲ) 在日最高气温不高于32℃时,求日销售额不低于5千元的概率.
为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取12件和5件,测量产品中微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:
编号 | 1 | 2 | 3 | 4 | 5 |
x | 169 | 178 | 166 | 175 | 180 |
y | 75 | 80 | 77 | 76 | 81 |
(2)当产品中的微量元素x,y满足x≥175且y≥75,该产品为优等品,
①用上述样本数据估计乙厂生产的优等品的数量;
②从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列及其期望.
某经销商试销A、B两种商品一个月(30天)的记录如下:
日销售量(件) | 0 | 1 | 2 | 3 | 4 | 5 |
商品A的频数 | 3 | 5 | 7 | 7 | 5 | 3 |
商品B的频数 | 4 | 4 | 6 | 8 | 5 | 3 |
(Ⅰ)设两种商品的销售量互不影响,求两种商品日获利值均超过100元的概率;
(Ⅱ)由于某种原因,该商家决定只选择经销A、B商品的一种,你认为应选择哪种商品,说明理由.
每一个父母都希望自己的孩子能升上比较理想的中学,于是就催生了“择校热”,这样“择校”的结果就导致了学生在路上耽误的时间增加了.若某生由于种种原因,每天只能6:15骑车从家出发到学校,途经5个路口,这5个路口将家到学校分成了6个路段,每个路段的骑车时间是10分钟(通过路口的时间忽略不计),假定他在每个路口遇见红灯的概率均为,且该生只在遇到红灯或到达学校才停车.对每个路口遇见红灯的情况统计如下:
红灯 | 1 | 2 | 3 | 4 | 5 |
等待时间(秒) | 60 | 60 | 90 | 30 | 90 |
(2)设表示该学生第一次停车时已经通过的路口数,求它的分布列与期望.