题目内容
现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为,命中得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.
(I)求该射手恰好命中两次的概率;
(II)求该射手的总得分的分布列及数学期望;
(I).
(II)的分布列是0 1 2 3 4
.
解析试题分析:(I)此类题的一般解法是,标记事件,计算概率,注意到记:“该射手恰好命中两次”为事件,“该射手第一次射击甲靶命中”为事件,“该射手第二次射击甲靶命中”为事件,“该射手射击乙靶命中”为事件.可得,,
进一步利用
计算即得.
(II)注意到的所有可能取值为0,1,2,3,4.利用独立事件同时发生的概率计算公式可得.细心计算是关键.
试题解析:(I)记:“该射手恰好命中两次”为事件,“该射手第一次射击甲靶命中”为事件,“该射手第二次射击甲靶命中”为事件,“该射手射击乙靶命中”为事件.
由题意知,,
所以
. 6分
(II)根据题意,的所有可能取值为0,1,2,3,4.
,
.
,
,
, 11分
故的分布列是
12分0 1 2 3 4
所以. 14分
考点:独立事件同时发生的概率,随机变量的分布列及数学期望.
已知某校在一次考试中,5名学生的数学和物理成绩如下表:
学生的编号i | 1 | 2 | 3 | 4 | 5 |
数学成绩x | 80 | 75 | 70 | 65 | 60 |
物理成绩y | 70 | 66 | 68 | 64 | 62 |
(Ⅱ)根据上表,利用最小二乘法,求出关于的线性回归方程,
其中
(III)利用(Ⅱ)中的线性回归方程,试估计数学90分的同学的物理成绩.(四舍五入到整数)
(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生
(I)分别求出按程序框图正确编程运行时输出y的值为i的概率pi(i=1,2,3);
(II)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i(i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.
甲的频数统计图(部分)
运行次数n | 输出y的值为1的频数 | 输出y的值为2的频数 | 输出y的值为3的频数 |
30 | 14 | 6 | 10 |
… | … | … | … |
2100 | 1027 | 376 | 697 |
运行次数n | 输出y的值为1的频数 | 输出y的值为2的频数 | 输出y的值为3的频数 |
30 | 12 | 11 | 7 |
… | … | … | … |
2100 | 1051 | 696 | 353 |
(III)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.