题目内容
【题目】A. 选修4-1:几何证明选讲
如图,已知为圆的一条弦,点为弧的中点,过点任作两条弦分别交于点.
求证:.
【答案】详见解析.
【解析】试题分析:连结PA,PB,CD,BC,因为∠PAB =∠PCB,
又点P为弧AB的中点,所以∠PAB =∠PBA,所以∠PCB =∠PBA. 又∠DCB =∠DPB,
所以∠PFE =∠PBA+∠DPB =∠PCB+∠DCB =∠PCD,所以E,F,D,C四点共圆.
试题解析:
连结PA,PB,CD,BC.
因为∠PAB =∠PCB,
又点P为弧AB的中点,所以∠PAB =∠PBA,
所以∠PCB =∠PBA. 又∠DCB =∠DPB,
所以∠PFE =∠PBA+∠DPB =∠PCB+∠DCB =∠PCD,
所以E,F,D,C四点共圆.
所以.
练习册系列答案
相关题目
【题目】已知y是x的函数,自变量x的取值范围x>0,下表是y与x的几组对应值:
x | … | 1 | 2 | 3 | 5 | 7 | 9 | … |
y | … | 1.98 | 3.95 | 2.63 | 1.58 | 1.13 | 0.88 | … |
小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.
下面是小腾的探究过程,请补充完整:
(1)如图,在平面直角坐标系xOy中,描出了以上表格中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(2)根据画出的函数图象,写出:
①x=4对应的函数值y约为
②该函数的一条性质: