题目内容

【题目】集合A={(x,y)|y=a},集合B={(x,y)|y=bx+1,b>0,b≠1},若集合A∩B≠,则实数a的取值范围是(
A.(﹣∞,1)
B.(﹣∞,1]
C.[1,+∞)
D.(1,+∞)

【答案】D
【解析】解:集合A={(x,y)|y=a}表示直线y=a的图象上的所有的点,
集合B={(x,y)|y=bx+1,b>0,b≠1|},表示函数y=bx+1的图象上的所有的点,
∵A∩B=,∴直线y=a与曲线y=bx+1的图象无交点,
∵曲线y=bx+1的图象在直线y=1上方,
∴a≤1
∴集合A∩B≠,则实数a的取值范围是(1,+∞)
故选:D
【考点精析】认真审题,首先需要了解集合的交集运算(交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网