题目内容
【题目】设O为△ABC的外心,若 + + = ,则M是△ABC的( )
A.重心(三条中线交点)
B.内心(三条角平分线交点)
C.垂心(三条高线交点)
D.外心(三边中垂线交点)
【答案】C
【解析】解:在△ABC中,O为外心,可得OA=OB=OC,
∵ + + = ,
∴ + = ﹣
设AB的中点为D,
则OD⊥AB, =2 ,
∴CM⊥AB,可得CM在AB边的高线上.
同理可证,AM在BC边的高线上,
故M是三角形ABC两高线的交点,可得M是三角形ABC的垂心,
故选:C
设AB的中点为D,根据题意可得OD⊥AB.由题中向量的等式化简得CM⊥AB,即CM在AB边的高线上.同理可证出AM在BC边的高线上,故可得M是三角形ABC的垂心.
练习册系列答案
相关题目