题目内容
【题目】在平面直角坐标系中,记抛物线y=x﹣x2与x轴所围成的平面区域为M,该抛物线与直线y=kx(k>0)所围成的平面区域为N,向区域M内随机抛掷一点P,若点P落在区域N内的概率为 ,则k的值为( )
A.
B.
C.
D.
【答案】A
【解析】解:∵抛物线y=x﹣x2与x轴交于点(0,0)与(1,0),
∴根据定积分的几何意义,可得抛物线与x轴所围成的平面区域M的面积为
S=(x﹣x2)dx=( )| = .
设抛物线与直线y=kx(k>0)所围成的平面区域A的面积为S',
∵向区域M内随机抛掷一点P,点P落在区域A内的概率为 ,
∴ = ,可得S'= S= ,
求出y=x﹣x2与y=kx的交点中,除原点外的点B坐标为(1﹣k,k﹣k2),
可得S'=[(x﹣x2)﹣kx]dx=[ (1﹣k)x2﹣ ]| = (1﹣k)3.
因此可得 (1﹣k)3= ,
解得k= .
故选:A
【考点精析】认真审题,首先需要了解几何概型(几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等).
【题目】已知函数f(x)=4cosωxsin(ωx+ )+a(ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.
(Ⅰ)求a和ω的值;
(Ⅱ)求函数f(x)在[0,π]上的单调递减区间.
【题目】某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:
喜欢甜品 | 不喜欢甜品 | 合计 | |
南方学生 | 60 | 20 | 80 |
北方学生 | 10 | 10 | 20 |
合计 | 70 | 30 | 100 |
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率. 附:K2=
P(K2>k0) | 0.10 | 0.05 |
| 0.005 |
k0 | 2.706 | 3.841 |
| 7.879 |