题目内容

【题目】已知是正数组成的数列, ,且点 在函数的图象上.

(1)求数列的通项公式;

(2)若列数满足,,求证:

【答案】解法一:()由已知得an+1=an+1、即an+1-an=1,又a1=1,

所以数列{an}是以1为首项,公差为1的等差数列.

an=1+(a-1)×1=n.

(Ⅱ)由()知:an=n从而bn+1-bn=2n.

bn=(bn-bn-1)+(bn-1-bn-2)+···+b2-b1+b1=2n-1+2n-2+···+2+1=2n-1.

因为bn·bn+2-b=(2n-1)(2n+2-1)-(2n-1-1)2=(22n+2-2n+2-2n+1)-(22n+2-2-2n+1-1)=-5·2n+4·2n=-2n0,

所以bn·bn+2b,

解法二:()同解法一.

)因为b2=1,

bn·bn+2-b=(bn+1-2n)(bn+1+2n+1)-b=2n+1·bn-1-2n·bn+1-2n·2n+12nbn+1-2n+1=2nbn+2n-2n+1

=2nbn-2n=…=2nb1-2=-2n0,所以bn-bn+2<b2n+1

【解析】试题分析:(1)由题设条件知,根据等差数列的定义即可求出数列的通项公式;(2)根据数列的递推关系,利用累加法求出数列的表达式,即可比较大小

试题解析:(1)由已知得

所以数列{}是以1为首项,公差为1的等差数列;

=1+

2)由(1)知

所以:

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网