题目内容
【题目】已知函数.
(1)讨论的单调性.
(2)试问是否存在,使得对恒成立?若存在,求的取值范围;若不存在,请说明理由.
【答案】(1)见解析;(2) 存在;的取值范围为.
【解析】
(1),,
所以得,所以通过对与的大小关系进行分类讨论得的单调性;
(2)假设存在满足题意的的值,由题意需,所以由(1)的单调性求即可;
又因为对恒成立,所以可以考虑从区间内任取一个值代入,解出的取值范围,从而将的范围缩小减少讨论.
解:(1),.
当时,,在上单调递增
当时,,在上单调递减,在上单调递增
当时,在上单调递减,在,上单调递增;
当时,在上单调递减,在,上单调递增.
(2)假设存在,使得对恒成立.
则,即,
设,则存在,使得,
因为,所以在上单调递增,
因为,所以时即.
又因为对恒成立时,需,
所以由(1)得:
当时,在上单调递增,所以,
且成立,从而满足题意.
当时,在上单调递减,在,上单调递增,
所以
所以(*)
设,,则在上单调递增,
因为,
所以的零点小于2,从而不等式组(*)的解集为,
所以即.
综上,存在,使得对恒成立,且的取值范围为.
【题目】某地级市共有中小学生,其中有学生在年享受了“国家精准扶贫”政策,在享受“国家精准扶贫”政策的学生中困难程度分为三个等次:一般困难、很困难、特别困难,且人数之比为,为进一步帮助这些学生,当地市政府设立“专项教育基金”,对这三个等次的困难学生每年每人分别补助元、元、元,经济学家调查发现,当地人均可支配年收入较上一年每增加,一般困难的学生中有会脱贫,脱贫后将不再享受“精准扶贫”政策,很困难的学生中有转为一般困难,特别困难的学生中有转为很困难.现统计了该地级市年到年共年的人均可支配年收入,对数据初步处理后得到了如图所示的散点图和表中统计量的值,其中年份取时代表年,与(万元)近似满足关系式,其中,为常数.(年至年该市中学生人数大致保持不变)
其中,
(1)估计该市年人均可支配年收入;
(2)求该市年的“专项教育基金”的财政预算大约为多少?
附:对于一组具有线性相关关系的数据,,,,其回归直线方程的斜率和截距的最小二乘估计分别为,
【题目】某班随机抽查了名学生的数学成绩,分数制成如图的茎叶图,其中组学生每天学习数学时间不足个小时,组学生每天学习数学时间达到一个小时,学校规定分及分以上记为优秀,分及分以上记为达标,分以下记为未达标.
(1)根据茎叶图完成下面的列联表:
达标 | 未达标 | 总计 | |
组 | |||
组 | |||
总计 |
(2)判断是否有的把握认为“数学成绩达标与否”与“每天学习数学时间能否达到一小时”有关.
参考公式与临界值表:,其中.