题目内容
17.给出以下五个函数:①y=$\frac{1}{x}$(x≠0);②y=x4+1;③y=2x;④y=log2x;⑤y=log2(x+$\sqrt{{x}^{2}+1}$),其中奇函数是①⑤,偶函数是②,非奇非偶函数是③④(写出所有正确答案的序号)分析 根据函数奇偶性的定义进行判断.
解答 解:①f(-x)=$\frac{1}{-x}$=-$\frac{1}{x}$=-f(x),则函数为奇函数.
②f(-x)=(-x)4+1=x4+1=f(x),即函数为偶函数;
③∵y=f(x)y=2x;为增函数,不是对称函数,
∴函数为非奇非偶函数.
④函数的定义域为(0,+∞),关于原点不对称,为非奇非偶函数.
⑤f(x)+f(-x)=log2(x+$\sqrt{{x}^{2}+1}$)+log2(-x+$\sqrt{{x}^{2}+1}$)=log2(x+$\sqrt{{x}^{2}+1}$)(-x+$\sqrt{{x}^{2}+1}$)=log2(x2+1-x2)=log21=0,
即f(-x)=-f(x),则函数为奇函数;
故①⑤为奇函数,②为偶函数,③④为非奇非偶函数,
故答案为:①⑤,②,③④
点评 本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.注意要先判断定义域是否关于原点对称.
练习册系列答案
相关题目
8.为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议.现对他前7次考试的数学成绩x、物理成绩y进行分析.下面是该生7次考试的成绩.
(1)他的数学成绩与物理成绩哪个更稳定?请给出你的理由;
(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?
(已知88×94+83×91+117×108+92×96+108×104+100×101+112×106=70497,882+832+1172+922+1082+1002+1122=70994)
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}^{2}-n{x}^{-2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
数学 | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理 | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
(2)已知该生的物理成绩y与数学成绩x是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?
(已知88×94+83×91+117×108+92×96+108×104+100×101+112×106=70497,882+832+1172+922+1082+1002+1122=70994)
(参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}^{2}-n{x}^{-2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$)
5.已知U为全集,集合A={x|x2-2x-3>0},B={x|2<x<4},那么集合B∩(∁UA)=( )
A. | {x|-1≤x≤4} | B. | {x|2<x≤3} | C. | {x|2≤x<3} | D. | {x|-1<x<4} |
9.函数f(x)=x2+$\sqrt{x}$的奇偶性为( )
A. | 奇函数 | B. | 偶函数 | ||
C. | 既是奇函数又是偶函数 | D. | 非奇非偶函数 |