题目内容
【题目】如图,已知四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长为3的正方形,侧棱AA1长为4,且AA1与A1B1 , A1D1的夹角都是60°,则AC1的长等于( )
A.10
B.
C.
D.
【答案】C
【解析】解:因为 ;
∴( )2=( + + )2
=( )2+( )2+( )2+2 +2 +2
=42+32+32+2×4×3cos120°+2×4×3cos120°+2×3×3cos90°
=10.
∴AC1=
故选C.
【考点精析】认真审题,首先需要了解棱柱的结构特征(两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形).
练习册系列答案
相关题目
【题目】某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:
产品A(件) | 产品B(件) | ||
研制成本、搭载费用之和(万元) | 20 | 30 | 计划最大资金额300万元 |
产品重量(千克) | 10 | 5 | 最大搭载重量110千克 |
预计收益(万元) | 80 | 60 |
试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?