题目内容

【题目】若函数f(x)= ,则函数y=|f(x)|﹣ 的零点个数为

【答案】4
【解析】解:当x≥1时, = ,即lnx= , 令g(x)=lnx﹣ ,x≥1时函数是连续函数,
g(1)=﹣ <0,g(2)=ln2﹣ =ln >0,
g(4)=ln4﹣2<0,由函数的零点判定定理可知g(x)=lnx﹣ ,有2个零点.
(结合函数y= 与y= 可知函数的图象由2个交点.)
当x<1时,y= ,函数的图象与y= 的图象如图,考查两个函数由2个交点,
综上函数y=|f(x)|﹣ 的零点个数为:4个.
故答案为:4.

利用分段函数,对x≥1,通过函数的零点与方程根的关系求解零点个数,当x<1时,利用数形结合求解函数的零点个数即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网