题目内容
【题目】已知平面内两点A(4,0),B(0,2)
(1)求过P(2,3)点且与直线AB平行的直线l的方程;
(2)设O(0,0),求△OAB外接圆方程.
【答案】(1) 直线l的方程x+2y-8=0;(2) △AOB的外接圆的方程为(x-2)2+(y-1)2=5.
【解析】试题分析:(1)求出直线的斜率,利用点斜式求出直线方程;
(2)根据题意,△AOB是以AB为斜边的直角三角形,因此外接圆是以AB为直径的圆.由此算出AB中点C的坐标和AB长度,结合圆的标准方程形式,即可求出△AOB的外接圆的方程.
试题解析:
(1)由已知得.
由点斜式
∴直线l的方程x+2y-8=0.
(2)OA⊥OB,可得△AOB的外接圆是以AB为直径的圆
∵AB中点为C(2,1),|AB|=2.∴圆的圆心为C(2,1),半径为r=.
可得△AOB的外接圆的方程为(x-2)2+(y-1)2=5.
练习册系列答案
相关题目
【题目】学校从参加高一年级期中考试的学生中抽出名学生,并统计了她们的数学成绩(成绩均为整数且满分为分),数学成绩分组及各组频数如下:
样本频率分布表:
分组 | 频数 | 频率 |
合计 |
(1)在给出的样本频率分布表中,求的值;
(2)估计成绩在分以上(含分)学生的比例;
(3)为了帮助成绩差的学生提高数学成绩,学校决定成立“二帮一”小组,即从成绩在的学生中选两位同学,共同帮助成绩在中的某一位同学.已知甲同学的成绩为分,乙同学的成绩为分,求甲、乙两同学恰好被安排在同一小组的概率.