题目内容

【题目】《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 如图,在阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,E为PC中点,点F在PB上,且PB⊥平面DEF,连接BD,BE.
(Ⅰ)证明:DE⊥平面PBC;
(Ⅱ)试判断四面体DBEF是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(Ⅲ)已知AD=2, ,求二面角F﹣AD﹣B的余弦值.

【答案】证明:(Ⅰ)因为PD⊥面ABCD,BC面ABCD,所以BC⊥PD.
因为四边形ABCD为矩形,
所以BC⊥DC.PD∩DC=D,
所以BC⊥面PDC.DE面PDC,DE⊥BC,
在△PDC中,PD=DC,E为PC中点,
所以DE⊥PC.又PC∩BC=C,
所以DE⊥面PBC.
解:(Ⅱ)四面体DBEF是鳖臑,
其中
(Ⅲ)以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系.
则D(0,0,0),A(2,0,0),
,则 .DF⊥PB得 ,解得
所以
设平面FDA的法向量
,令z=1得x=0,y=﹣3.
平面FDA的法向量
平面BDA的法向量

二面角F﹣AD﹣B的余弦值为

【解析】(Ⅰ)推导出BC⊥PD.BC⊥DC,从而BC⊥面PDC,进而DE⊥BC,再求出DE⊥PC,由此能证明DE⊥面PBC.(Ⅱ)四面体DBEF是鳖臑, .(Ⅲ)以DA,DC,DP所在直线为x轴,y轴,z轴建立空间直角坐标系,利用向量法能求出二面角F﹣AD﹣B的余弦值.
【考点精析】解答此题的关键在于理解直线与平面垂直的判定的相关知识,掌握一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网