题目内容
【题目】[选修4-5:不等式选讲]已知函数f(x)=2|x+1|+|x﹣2|的最小值为m.
(Ⅰ)求实数m的值;
(Ⅱ)若a,b,c均为正实数,且满足a+b+c=m,求证: + + ≥3.
【答案】(Ⅰ)解:x≤﹣1,f(x)=﹣2x﹣2﹣x+2=﹣3x≥3, ﹣1<x<2,f(x)=2x+2﹣x+2=x+4∈(3,6),
x≥2,f(x)=2x+2+x﹣2=3x≥6,
∴m=3;
(Ⅱ)证明:a+b+c=3,由柯西不等式可得(a+b+c)( + + )≥(a+b+c)2 ,
∴ + + ≥3
【解析】(Ⅰ)分类讨论,即可求实数m的值;(Ⅱ)a+b+c=3,由柯西不等式可得(a+b+c)( + + )≥(a+b+c)2 , 即可证明结论.
【考点精析】根据题目的已知条件,利用不等式的证明的相关知识可以得到问题的答案,需要掌握不等式证明的几种常用方法:常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.
【题目】某学校高三年级有学生500人,其中男生300人,女生200人,为了研究学生的数学成绩是否与性别有关,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们期中考试的数学分数,然后按性别分为男、女两组,再将两组学生的分数分成5组:[100,110),[110,120),[120,130),[130,140),[140,150]分别加以统计,得到如图所示的频率分布直方图.
(1)从样本中分数小于110分的学生中随机抽取2人,求两人恰好为一男一女的概率;
(2)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
附:K2= .