题目内容
【题目】锐角△ABC中,内角A,B,C的对边分别为a,b,c,且满足(a﹣b)(sinA+sinB)=(c﹣b)sinC,若 ,则b2+c2的取值范围是( )
A.(5,6]
B.(3,5)
C.(3,6]
D.[5,6]
【答案】A
【解析】解:∵(a﹣b)(sinA+sinB)=(c﹣b)sinC,由正弦定理可得:(a﹣b)(a+b)=(c﹣b)c,化为b2+c2﹣a2=bc. 由余弦定理可得:cosA= = = ,
∴A为锐角,可得A= ,
∵ ,
∴由正弦定理可得: ,
∴可得:b2+c2=(2sinB)2+[2sin( ﹣B)]2=3+2sin2B+ sin2B=4+2sin(2B﹣ ),
∵B∈( , ),可得:2B﹣ ∈( , ),
∴sin(2B﹣ )∈( ,1],可得:b2+c2=4+2sin(2B﹣ )∈(5,6].
故选:A.
【考点精析】解答此题的关键在于理解正弦定理的定义的相关知识,掌握正弦定理:,以及对余弦定理的定义的理解,了解余弦定理:;;.
练习册系列答案
相关题目
【题目】下表是一位母亲给儿子作的成长记录:
年龄/周岁 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
身高/cm | 94.8 | 104.2 | 108.7 | 117.8 | 124.3 | 130.8 | 139.1 |
根据以上样本数据,她建立了身高 (cm)与年龄x(周岁)的线性回归方程为 ,给出下列结论:
①y与x具有正的线性相关关系;
②回归直线过样本的中心点(42,117.1);
③儿子10岁时的身高是 cm;
④儿子年龄增加1周岁,身高约增加 cm.
其中,正确结论的个数是
A.1
B.2
C.3
D.4