题目内容

【题目】已知函数 (a>0,a≠1)是奇函数.
(1)求实数m的值;
(2)判断函数f(x)在(1,+∞)上的单调性,并给出证明;
(3)当x∈(n,a﹣2)时,函数f(x)的值域是(1,+∞),求实数a与n的值.

【答案】
(1)解:∵函数 (a>0,a≠1)是奇函数.

∴f(﹣x)+f(x)=0解得m=﹣1.


(2)解:由(1)及题设知:

∴当x1>x2>1时,

∴t1<t2

当a>1时,logat1<logat2,即f(x1)<f(x2).

∴当a>1时,f(x)在(1,+∞)上是减函数.

同理当0<a<1时,f(x)在(1,+∞)上是增函数.


(3)解:由题设知:函数f(x)的定义域为(1,+∞)∪(﹣∞,﹣1),

∴①当n<a﹣2≤﹣1时,有0<a<1.由(1)及(2)题设知:f(x)在为增函数,由其值域为(1,+∞)知 (无解);

②当1≤n<a﹣2时,有a>3.由(1)及(2)题设知:f(x)在(n,a﹣2)为减函数,由其值域为(1,+∞)知

,n=1


【解析】(1)根据奇函数的定义可知f(﹣x)+f(x)=0,建立关于m的等式关系,解之即可;(2)先利用函数单调性的定义研究真数的单调性,讨论a的取值,然后根据复合函数的单调性进行判定;(3)先求函数的定义域,讨论(n,a﹣2)与定义域的关系,然后根据单调性建立等量关系,求出n和a的值.
【考点精析】解答此题的关键在于理解对数函数的单调性与特殊点的相关知识,掌握过定点(1,0),即x=1时,y=0;a>1时在(0,+∞)上是增函数;0>a>1时在(0,+∞)上是减函数.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网