题目内容
(2013•重庆)设f(x)=a(x﹣5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
(1) (2)见解析
(1)因f(x)=a(x﹣5)2+6lnx,故f′(x)=2a(x﹣5)+,(x>0),
令x=1,得f(1)=16a,f′(1)=6﹣8a,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣16a=(6﹣8a)(x﹣1),
由切线与y轴相交于点(0,6).
∴6﹣16a=8a﹣6,
∴a=.
(2)由(1)得f(x)=(x﹣5)2+6lnx,(x>0),
f′(x)=(x﹣5)+=,令f′(x)=0,得x=2或x=3,
当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,
当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,
故f(x)在x=2时取得极大值f(2)=+6ln2,在x=3时取得极小值f(3)=2+6ln3.
令x=1,得f(1)=16a,f′(1)=6﹣8a,
∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣16a=(6﹣8a)(x﹣1),
由切线与y轴相交于点(0,6).
∴6﹣16a=8a﹣6,
∴a=.
(2)由(1)得f(x)=(x﹣5)2+6lnx,(x>0),
f′(x)=(x﹣5)+=,令f′(x)=0,得x=2或x=3,
当0<x<2或x>3时,f′(x)>0,故f(x)在(0,2),(3,+∞)上为增函数,
当2<x<3时,f′(x)<0,故f(x)在(2,3)上为减函数,
故f(x)在x=2时取得极大值f(2)=+6ln2,在x=3时取得极小值f(3)=2+6ln3.
练习册系列答案
相关题目