题目内容

【题目】定义在上的奇函数满足,且当时,,则下列结论正确的是( )

A. B.

C. D.

【答案】C

【解析】

根据f(x)是奇函数,以及f(x+2)=f(-x)即可得出f(x+4)=f(x),即得出f(x)的周期为4,从而可得出f(2018)=f(0), 然后可根据f(x)在[0,1]上的解析式可判断f(x)在[0,1]上单调递增,从而可得出结果.

∵f(x)是奇函数;∴f(x+2)=f(-x)=-f(x);∴f(x+4)=-f(x+2)=f(x);
∴f(x)的周期为4;∴f(2018)=f(2+4×504)=f(2)=f(0),, ∵x∈[0,1]时,f(x)=2x-cosx单调递增;∴f(0)<,故选C.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网