题目内容
【题目】下列说法错误的是
A. 相关关系是一种非确定性关系
B. 线性回归方程对应的直线,至少经过其样本数据点中的一个点
C. 在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高
D. 在回归分析中,为的模型比为的模型拟合的效果好
【答案】B
【解析】
利用相关关系、回归直线、残差图以及相关指数的概念来进行判断。
对于选项A,相关关系是一种非确定的关系,而函数关系是一种确定的关系,A选项正确;
对于选项B,回归直线过样本数据的中心点,并不一定过样本数据中的某一个点,B选项错误;
对于C选项,在残差图中,残差点分布的带状区域的宽度越狭窄,说明数据越逼近回归直线,两个变量的相关关系越强,其拟合精确度越高,C选项正确;
对于D选项而言,越大,其拟合效果越好,D选项正确。
故选:B.
【题目】某种仪器随着使用年限的增加,每年的维护费相应增加. 现对一批该仪器进行调查,得到这批仪器自购入使用之日起,前5年平均每台仪器每年的维护费用大致如下表:
年份(年) | 1 | 2 | 3 | 4 | 5 |
维护费(万元) | 0.7 | 1.2 | 1.6 | 2.1 | 2.4 |
(1)根据表中所给数据,试建立关于的线性回归方程;
(2)若该仪器的价格是每台12万元,你认为应该使用满五年换一次仪器,还是应该使用满八年换一次仪器?并说明理由.
参考公式:用最小二乘法求线性回归方程的系数公式:
,
【题目】据统计,2017年国庆中秋假日期间,黔东南州共接待游客590.23万人次,实现旅游收入48.67亿元,同比分别增长44.57%、55.22%.旅游公司规定:若公司导游接待旅客,旅游年总收入不低于40(单位:百万元),则称为优秀导游.经验表明,如果公司的优秀导游率越高,则该公司的影响度越高.已知甲、乙两家旅游公司各有导游100名,统计他们一年内旅游总收入,分别得到甲公司的频率分布直方图和乙公司的频数分布表如下:
分组 | |||||
频数 | 18 | 49 | 24 | 5 |
(Ⅰ)求的值,并比较甲、乙两家旅游公司,哪家的影响度高?
(Ⅱ)若导游的奖金(单位:万元),与其一年内旅游总收入(单位:百万元)之间的关系为,求甲公司导游的年平均奖金;
(Ⅲ)从甲、乙两家公司旅游收入在的总人数中,用分层抽样的方法随机抽取6人进行表彰,其中有两名导游代表旅游行业去参加座谈,求参加座谈的导游中有乙公司导游的概率.
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸x(mm)之间近似满足关系式(b、c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
质量y (g) | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)现从抽取的6件合格产品中再任选3件,记为取到优等品的件数,试求随机变量的分布列和期望;
(Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(ⅰ)根据所给统计量,求y关于x的回归方程;
(ⅱ)已知优等品的收益(单位:千元)与的关系为,则当优等品的尺寸x为何值时,收益的预报值最大?(精确到0.1)
附:对于样本 ,其回归直线的斜率和截距的最小二乘估计公式分别为:,,.