题目内容
【题目】某单位对员工业务进行考核,从类员工(工作3年及3年以内的员工)和类员工(工作3年以上的员工)的成绩中各抽取15个,具体数据如下:
类成绩:20 10 22 30 15 12 41 22 31 25 12 26 29 32 33
类成绩:21 40 30 41 42 31 49 51 52 43 47 47 32 45 48
(1)根据两组数据完成两类员工成绩的茎叶图,并通过茎叶图比较两类员工成绩的平均值及分散程度(不要求计算出具体值,得出结论即可);
(2)研究发现从业时间与业务能力之间具有线性相关关系,从上述抽取的名员工中抽取4名员工的成绩如下:
员工工作时间(单位年) | 1 | 2 | 3 | 4 |
考核成绩 | 10 | 15 | 20 | 30 |
根据四个的数据,求关于的线性回归方程.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,.
【答案】(1)B员工成绩的平均值大于A员工成绩的平均值,B员工成绩集中,A员工成绩分散;(2).
【解析】
(1)根据所给数据,即可求得茎叶图,根据茎叶图可估计两类员工成绩的平均值及分散程度;
(2)根据所给数据求得:,,,求得,即可求得线性回归方程.
(1)根据所给数据,可得茎叶图,如图:
根据茎叶图可得:员工成绩的平均值大于员工成绩的平均值,
员工成绩集中,员工成绩分散
(2)根据所给数据可得:,,
,
又
可得:
【题目】2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查.
(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表.请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;
(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望.
选择“物理” | 选择“地理” | 总计 | |
男生 | 10 | ||
女生 | 25 | ||
总计 |
附参考公式及数据:,其中.
0.05 | 0.01 | |
3.841 | 6.635 |
【题目】“中国式过马路”存在很大的交通安全隐患,某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如图的列联表.已知在这30人中随机抽取1人抽到反感“中国式过马路”的路人的概率是.
(1)求列联表中的,的值;
男性 | 女性 | 合计 | |
反感 | 10 | ||
不反感 | 8 | ||
合计 | 30 |
(2)根据列联表中的数据,判断是否有95%把握认为反感“中国式过马路”与性别有关?
临界值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
参考公式:,