题目内容
【题目】某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为吨,最多为吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为元.
(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?
(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
【答案】(1)吨;(2)不获利,补元.
【解析】
(1)求得每吨二氧化碳的平均处理成本为,利用基本不等式求得的最小值,利用等号成立的条件求得的值,由此可得出结论;
(2)令,求得该函数在区间的最大值,进而可得出结论.
(1)由题意可知,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,
所以,每吨二氧化碳的平均处理成本为,
由基本不等式可得(元),
当且仅当时,即当时,等号成立,
因此,该单位每月处理量为吨时,才能使每吨的平均处理成本最低;
(2)令,
,函数在区间上单调递减,
当时,函数取得最大值,即.
所以,该单位每月不能获利,国家至少需要补贴元才能使该单位不亏损.
【题目】某单位对员工业务进行考核,从类员工(工作3年及3年以内的员工)和类员工(工作3年以上的员工)的成绩中各抽取15个,具体数据如下:
类成绩:20 10 22 30 15 12 41 22 31 25 12 26 29 32 33
类成绩:21 40 30 41 42 31 49 51 52 43 47 47 32 45 48
(1)根据两组数据完成两类员工成绩的茎叶图,并通过茎叶图比较两类员工成绩的平均值及分散程度(不要求计算出具体值,得出结论即可);
(2)研究发现从业时间与业务能力之间具有线性相关关系,从上述抽取的名员工中抽取4名员工的成绩如下:
员工工作时间(单位年) | 1 | 2 | 3 | 4 |
考核成绩 | 10 | 15 | 20 | 30 |
根据四个的数据,求关于的线性回归方程.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,.
【题目】南充高中扎实推进阳光体育运动,积极引导学生走向操场,走进大自然,参加体育锻炼,每天上午第三节课后全校大课间活动时长35分钟.现为了了解学生的体育锻炼时间,采用简单随机抽样法抽取了100名学生,对其平均每日参加体育锻炼的时间(单位:分钟)进行调查,按平均每日体育锻炼时间分组统计如下表:
分组 | ||||||
男生人数 | 2 | 16 | 19 | 18 | 5 | 3 |
女生人数 | 3 | 20 | 10 | 2 | 1 | 1 |
若将平均每日参加体育锻炼的时间不低于120分钟的学生称为“锻炼达人”.
(1)将频率视为概率,估计我校7000名学生中“锻炼达人”有多少?
(2)从这100名学生的“锻炼达人”中按性别分层抽取5人参加某项体育活动.
①求男生和女生各抽取了多少人;
②若从这5人中随机抽取2人作为组长候选人,求抽取的2人中男生和女生各1人的概率.
【题目】空气质量指数AQI是反映空气质量状况的指数,AQI指数值越小,表明空气质量越好,其对应关系如下表:
AQI指数值 | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
下图是某市10月1日—20日AQI指数变化趋势:
下列叙述错误的是
A. 这20天中AQI指数值的中位数略高于100
B. 这20天中的中度污染及以上的天数占
C. 该市10月的前半个月的空气质量越来越好
D. 总体来说,该市10月上旬的空气质量比中旬的空气质量好