题目内容
若等差数列的前6项和为23,前9项和为57,则数列的前n项和Sn=________.
n2-n
【解析】由条件得即故an=n2-n
如图①,E、F分别是直角三角形ABC边AB和AC的中点,∠B=90°,沿EF将三角形ABC折成如图②所示的锐二面角A1EFB,若M为线段A1C中点.求证:
(1)直线FM∥平面A1EB;
(2)平面A1FC⊥平面A1BC.
如图,在三棱柱ABC-A1B1C1中,D是BC的中点.
(1)若E为A1C1的中点,求证:DE∥平面ABB1A1;
(2)若E为A1C1上一点,且A1B∥平面B1DE,求的值..
在长方体ABCDA1B1C1D1的A1C1面上有一点P(如图所示,其中P点不在对角线B1D1)上.
(1)过P点在空间作一直线l,使l∥直线BD,应该如何作图?并说明理由;
(2)过P点在平面A1C1内作一直线m,使m与直线BD成α角,其中α∈,这样的直线有几条,应该如何作图?
设不等式组所表示的平面区域为Dn,记Dn内的整点个数为an(n∈N*)(整点即横坐标和纵坐标均为整数的点).
(1)求数列{an}的通项公式;
(2)记数列{an}的前n项和为Sn,且Tn=.若对于一切的正整数n,总有Tn≤m,求实数m的取值范围.
设数列{an}的前n项和为Sn.已知a1=1,=an+1-n2-n-,n∈N*.
(1)求a2的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有.
甲、乙两大超市同时开业,第一年的全年销售额均为a万元,由于经营方式不同,甲超市前n年的总销售额为(n2-n+2)万元,乙超市第n年的销售额比前一年销售额多a万元.
(1)设甲、乙两超市第n年的销售额分别为an、bn,求an、bn的表达式;
(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?
已知各项均为正数的数列{an}的前n项的乘积Tn=(n∈N*),bn=log2an,则数列{bn}的前n项和Sn取最大时,n=________.
设Sn为等差数列{an}的前n项和,S8=4a3,a7=-2,则a9=________.