题目内容
下列命题:
①G2=ab是三个数a、G、b成等比数列的充要条件;
②若y=f(x)不恒为0,且对于?x∈R,都有f(x+2)=-f(x),则f(x)是周期函数;
③对于命题p:?x∈R,2x+3>0,则¬p:?x0∈R,2x0+3<0;
④直线l:
x+
y+1+a=0与圆C:x2+y2=a(a>0)相离.
其中不正确命题的个数为( )
①G2=ab是三个数a、G、b成等比数列的充要条件;
②若y=f(x)不恒为0,且对于?x∈R,都有f(x+2)=-f(x),则f(x)是周期函数;
③对于命题p:?x∈R,2x+3>0,则¬p:?x0∈R,2x0+3<0;
④直线l:
2 |
2 |
其中不正确命题的个数为( )
A、1 | B、2 | C、3 | D、4 |
练习册系列答案
相关题目
已知平行四边形ABCD中,
=(2,8),
=(-3,4),对角线AC与BD相交于点M,则
的坐标为( )
AD |
AB |
AM |
A、(-
| ||
B、(-
| ||
C、(
| ||
D、(
|
一无穷等比数列{an}各项的和为
,第二项为
,则该数列的公比为( )
3 |
2 |
1 |
3 |
A、
| ||||
B、
| ||||
C、-
| ||||
D、
|
已知命题p:函数y=sin4x是最小正周期为
的周期函数,命题q:函数y=tanx在(
,π)上单调递减,则下列命题为真命题的是( )
π |
2 |
π |
2 |
A、p∧q |
B、(¬p)∨q |
C、(¬p)∧(¬q) |
D、(¬p)∨(¬q) |
已知命题p:“?a>0,有ea≥1成立”,则¬p为( )
A、?a≤0,有ea≤1成立 | B、?a≤0,有ea≥1成立 | C、?a>0,有ea<1成立 | D、?a>0,有ea≤1成立 |
下列命题是假命题的是( )
A、?α,β∈R,使tan(α+β)=tanα+tanβ成立 | B、?α,β∈R,使cos(α+β)<cosα+cosβ成立 | C、△ABC中,“A<B”是“sinA<sinB”成立的充要条件 | D、?φ∈R,函数y=sin(2x+φ)都不是偶函数 |
“a=1”是“函数f(x)=|x-a|+b(a,b∈R)在区间[1,+∞)上为增函数”的( )
A、充分不必要条件 | B、必要不充分条件 | C、充要条件 | D、既不充分也不必要条件 |