题目内容
16.已知命题p:实数m满足m2+12a2<7am(a>0),命题q:实数m满足方程$\frac{{x}^{2}}{m-1}$+$\frac{y^2}{3-m}$=1表示的焦点在y轴上的椭圆,且p是q的充分不必要条件,a的取值范围为[$\frac{1}{3}$,$\frac{1}{2}$].分析 根据命题p、q分别求出m的范围,再根据p是q的充分不必要条件列出关于m的不等式组,解不等式组即可.
解答 解:由m2-7am+12a2<0(a>0),则3a<m<4a
即命题p:3a<m<4a,
实数m满足方程$\frac{{x}^{2}}{m-1}$+$\frac{y^2}{3-m}$=1表示的焦点在y轴上的椭圆,
则$\left\{\begin{array}{l}{m-1>0}\\{3-m>0}\\{m-1<3-m}\end{array}\right.$,
,解得1<m<2,
若p是q的充分不必要条件,
则$\left\{\begin{array}{l}{3a≥1}\\{4a≤2}\end{array}\right.$,
解得$\frac{1}{3}≤a≤\frac{1}{2}$,
故答案为[$\frac{1}{3}$,$\frac{1}{2}$].
点评 本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p,q的等价条件是解决本题的关键.
练习册系列答案
相关题目