题目内容
19.来晋江旅游的外地游客中,若甲、乙、丙三人选择去五店市游览的概率均为$\frac{3}{5}$,且他们的选择互不影响,则这三人中至多有两人选择去五店市游览的概率为( )A. | $\frac{36}{125}$ | B. | $\frac{44}{125}$ | C. | $\frac{54}{125}$ | D. | $\frac{98}{125}$ |
分析 根据题意,设“三人中至多有两人选择去五店市游览”为事件A,则A的对立事件$\overline{A}$为“三人都选择去五店市游览”,由相互独立事件的概率公式可得P($\overline{A}$),结合对立事件的概率公式计算可得答案.
解答 解:根据题意,设“三人中至多有两人选择去五店市游览”为事件A,
则A的对立事件$\overline{A}$为“三人都选择去五店市游览”,
又由甲、乙、丙三人选择去五店市游览的概率均为$\frac{3}{5}$,且他们的选择互不影响,
则P($\overline{A}$)=$\frac{3}{5}$×$\frac{3}{5}$×$\frac{3}{5}$=$\frac{27}{125}$,
则P(A)=1-P($\overline{A}$)=$\frac{98}{125}$;
故选:D.
点评 本题考查互斥事件的概率计算,解题时利用对立事件的概率特点,先求出A的对立事件的概率.
练习册系列答案
相关题目
7.在△ABC中,a=3,b=x,cosB=$\frac{2}{3}$,若△ABC有两解,则x的取值范围是( )
A. | (3,+∞) | B. | ($\sqrt{5}$,+∞) | C. | ($\sqrt{5}$,3) | D. | (0,$\sqrt{5}$) |
14.在△ABC中,若BC=2,AC=1,∠A=30°,则△ABC是( )
A. | 钝角三角形 | B. | 锐角三角形 | C. | 直角三角形 | D. | 形状不能确定 |
8.“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
(2)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.
(1)写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 6.635 | 7.879 |