题目内容

20.在[0,1]上任取一数a,在[1,2]上任取一数b,则点(a,b)满足a2+b2≤2的概率为$\frac{π-2}{4}$.

分析 根据几何概型,只要求出在两个区间内随机取两个数分别记为a,b,对应平面区域的面积,再求出满足条件a2+b2≤2对应的平面区域的面积,然后代入几何概型公式,即可求解.

解答 解:[0,1]上任取一数a,在[1,2]上任取一数b,则(a,b)点对应的区域如图中正方形所示
若a2+b2≤2,
则(a,b)点对应的区域在以原点为圆心,以$\sqrt{2}$为半径的圆上或圆内
如图中阴影部分所示,∵S正方形=1×1=1,S阴影=$\frac{π(\sqrt{2})^{2}}{8}-\frac{1}{2}$=$\frac{π}{4}-\frac{1}{2}$,
故在[0,1]上任取一数a,在[1,2]上任取一数b,使得a2+b2≤2的概率P=$\frac{{S}_{阴影}}{{S}_{正方形}}$=$\frac{\frac{π}{4}-\frac{1}{2}}{1}=\frac{π-2}{4}$;
故答案为:$\frac{π-2}{4}$.

点评 本题考查几何概型;其概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网