题目内容
8.已知点集$U=\left\{{({x,y})\left|{\left\{\begin{array}{l}x=k\\ y={k^3}\end{array}\right.,k=-1,0,1,2,3}\right.}\right\}$,则由U中的任意三点可组成( )个不同的三角形.A. | 7 | B. | 8 | C. | 9 | D. | 10 |
分析 先求出点集U,在任选三点,当取(-1,1),(0,0),(1,1)时,三点在同一条直线上,不能构成三角形,故要排除,问题得以解决.
解答 解:点集$U=\left\{{({x,y})\left|{\left\{\begin{array}{l}x=k\\ y={k^3}\end{array}\right.,k=-1,0,1,2,3}\right.}\right\}$,得到{(-1,-1),(0,0),(1,1),(2,8),(3,27)},从中选选3点,有C53=10种,
当取(-1,1),(0,0),(1,1)时,三点在同一条直线上,不能构成三角形,故要排除,
故则由U中的任意三点可组成10-1=9个不同的三角形.
故选:C.
点评 本题考查了简单的组合问题,关键是要排除不能构成三角形的种数,属于基础题.
练习册系列答案
相关题目
18.下列命题中,真命题是( )
A. | ?x0∈R,e${\;}^{{x}_{0}}$≤0 | B. | ?x∈R,2x>x2 | ||
C. | 命题:若x≠y,则sinx≠siny逆否命题 | D. | a>1,b>1是ab>1的充分不必要条件 |
19.设M=$\frac{{{2^x}+{2^y}}}{2},N={2^{\frac{x+y}{2}}},P={2^{\sqrt{xy}}}$(其中0<x<y),则M,N,P的大小关系为( )
A. | M<N<P | B. | N<P<M | C. | P<M<N | D. | P<N<M |
17.5人排成一排,甲只能排在第一个或第二两个位置,乙只能排在第二或第三两个位置,不同的排法共有( )
A. | 12种 | B. | 16种 | C. | 18种 | D. | 24种 |