题目内容
【题目】如图,长方体ABCD﹣A1B1C1D1中,AA1= ,AB=1,AD=2,E为BC的中点,点M为棱AA1的中点.
(1)证明:DE⊥平面A1AE;
(2)证明:BM∥平面A1ED.
【答案】
(1)证明:在△AED中,AE=DE= ,AD=2,
∴AE⊥DE.
∵A1A⊥平面ABCD,
∴A1A⊥DE,
∴DE⊥平面A1AE
(2)证明:设AD的中点为N,连接MN、BN.
在△A1AD中,AM=MA1,AN=ND,∴MN∥A1D,
∵BE∥ND且BE=ND,
∴四边形BEDN是平行四边形,
∴BN∥ED,
∴平面BMN∥平面A1ED,
∴BM∥平面A1ED.
【解析】(1)欲证DE⊥平面A1AE,根据线面垂直的判定定理可知只需证AE⊥DE,A1A⊥DE,即可;(2)设AD的中点为N,连接MN、BN,由线线平行推出面面平行,再由平面BMN∥平面A1ED,可推出BM∥平面A1ED.
【考点精析】掌握直线与平面平行的判定和直线与平面垂直的判定是解答本题的根本,需要知道平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.
练习册系列答案
相关题目