题目内容
【题目】在四棱锥的底面中,,,平面,是的中点,且
(Ⅰ)求证:平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由.
【答案】(Ⅰ)详见解析;(Ⅱ);(Ⅲ)存在,点为线段的中点.
【解析】
(Ⅰ)连结,,,则四边形为平行四边形,得到证明.
(Ⅱ)建立如图所示坐标系,平面法向量为,平面的法向量,计算夹角得到答案.
(Ⅲ)设,计算,,根据垂直关系得到答案.
(Ⅰ)连结,,,则四边形为平行四边形.
平面.
(Ⅱ)平面,四边形为正方形.
所以,,两两垂直,建立如图所示坐标系,
则,,,,
设平面法向量为,则,
连结,可得,又所以,平面,
平面的法向量,
设二面角的平面角为,则.
(Ⅲ)线段上存在点使得,设,
,,,
所以点为线段的中点.
练习册系列答案
相关题目
【题目】光伏发电是将光能直接转变为电能的一种技术,具有资源的充足性及潜在的经济性等优点,在长期的能源战略中具有重要地位,2015年起,国家能源局、国务院扶贫办联合在6省的30个县开展光伏扶贫试点,在某县居民中随机抽取50户,统计其年用量得到以下统计表.以样本的频率作为概率.
用电量(单位:度) | |||||
户数 | 7 | 8 | 15 | 13 | 7 |
(Ⅰ)在该县居民中随机抽取10户,记其中年用电量不超过600度的户数为,求的数学期望;
(Ⅱ)在总结试点经验的基础上,将村级光伏电站稳定为光伏扶贫的主推方式.已知该县某自然村有居民300户.若计划在该村安装总装机容量为300千瓦的光伏发电机组,该机组所发电量除保证该村正常用电外,剩余电量国家电网以0.8元/度的价格进行收购.经测算每千瓦装机容量的发电机组年平均发电1000度,试估计该机组每年所发电量除保证正常用电外还能为该村创造直接受益多少元?