题目内容
【题目】关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请全校名同学每人随机写下一个都小于的正实数对;再统计两数能与构成钝角三角形三边的数对的个数;最后再根据统计数估计的值,那么可以估计的值约为( )
A.B.C.D.
【答案】D
【解析】
由试验结果知对0~1之间的均匀随机数 ,满足,面积为1,再计算构成钝角三角形三边的数对,满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计的值.
解:根据题意知,名同学取对都小于的正实数对,即,
对应区域为边长为的正方形,其面积为,
若两个正实数能与构成钝角三角形三边,则有,
其面积;则有,解得
故选:.
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数与烧开一壶水所用时间的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
表中,.
(1)根据散点图判断,与哪一个更适宜作烧水时间关于开关旋钮旋转的弧度数的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立关于的回归方程;
(3)若单位时间内煤气输出量与旋转的弧度数成正比,那么,利用第(2)问求得的回归方程知为多少时,烧开一壶水最省煤气?
附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计值分别为,
【题目】据历年大学生就业统计资料显示:某大学理工学院学生的就业去向涉及公务员、教师、金融、公司和自主创业等五大行业2020届该学院有数学与应用数学、计算机科学与技术和金融工程等三个本科专业,毕业生人数分别是70人,140人和210人现采用.分层抽样的方法,从该学院毕业生中抽取18人调查学生的就业意向.
(1)应从该学院三个专业的毕业生中分别抽取多少人?
(2)国家鼓励大学生自主创业,在抽取的18人中,就业意向恰有三个行业的学生有5人为方便统计,将恰有三个行业就业意向的这5名学生分别记为、、、、,统计如下表:
公务员 | ○ | ○ | × | ○ | × |
教师 | ○ | × | ○ | × | ○ |
金融 | ○ | ○ | ○ | × | ○ |
公式 | × | × | ○ | ○ | ○ |
自主创业 | × | ○ | ○ | × |
其中“○”表示有该行业就业意向,“×”表示无该行业就业意向.
现从、、、、这5人中随机抽取2人接受采访.设为事件“抽取的2人中至少有一人有自主创业意向”,求事件发生的概率.