题目内容
【题目】已知双曲线E的左、右焦点分别为F1,F2,P是双曲线E上的一点,且|PF2|=2|PF1|,若直线PF2与双曲线E的渐近线交于点M,且M为PF2的中点,则双曲线E的渐近线方程为( )
A.y=±B.y=±C.y=±2xD.y=±3x
【答案】C
【解析】
画出图象,根据双曲线的定义及性质可得|F1P|=2a,|MF2|=2a,|OM|=a,cos∠MOF2,再根据余弦定理得齐次式,从而可求出渐近线方程.
解:画出图象如图:
可得|F1P|=2a,|MF2|=2a,|OM|=a,cos∠MOF2,
所以4a2=a2+c2﹣2accos∠MOF1,
解得,5a2=c2,即4a2=b2,
所以2,
所以双曲线的渐近线方程为:y=±2x,
故选:C.
【题目】据历年大学生就业统计资料显示:某大学理工学院学生的就业去向涉及公务员、教师、金融、公司和自主创业等五大行业2020届该学院有数学与应用数学、计算机科学与技术和金融工程等三个本科专业,毕业生人数分别是70人,140人和210人现采用.分层抽样的方法,从该学院毕业生中抽取18人调查学生的就业意向.
(1)应从该学院三个专业的毕业生中分别抽取多少人?
(2)国家鼓励大学生自主创业,在抽取的18人中,就业意向恰有三个行业的学生有5人为方便统计,将恰有三个行业就业意向的这5名学生分别记为、、、、,统计如下表:
公务员 | ○ | ○ | × | ○ | × |
教师 | ○ | × | ○ | × | ○ |
金融 | ○ | ○ | ○ | × | ○ |
公式 | × | × | ○ | ○ | ○ |
自主创业 | × | ○ | ○ | × |
其中“○”表示有该行业就业意向,“×”表示无该行业就业意向.
现从、、、、这5人中随机抽取2人接受采访.设为事件“抽取的2人中至少有一人有自主创业意向”,求事件发生的概率.
【题目】2020年3月,国内新冠肺炎疫情得到有效控制,人们开始走出家门享受春光.某旅游景点为吸引游客,推出团体购票优惠方案如下表:
购票人数 | 1~50 | 51~100 | 100以上 |
门票价格 | 13元/人 | 11元/人 | 9元/人 |
两个旅游团队计划游览该景点.若分别购票,则共需支付门票费1290元;若合并成个团队购票,则需支付门票费990元,那么这两个旅游团队的人数之差为( )
A.20B.25C.30D.40