题目内容

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知曲线的参数方程为为参数)。曲线的参数方程为为参数),在以坐标原点为极点,轴正半轴为极轴建立极坐标系.

(1)求曲线的极坐标方程;

(2)在极坐标系中,射线与曲线交于点,射线与曲线交于点,求的面积(其中为坐标原点).

【答案】(1) 曲线:,曲线.

(2)1.

【解析】分析:第一问首先将参数方程消参化为普通方程,之后应用极坐标与平面直角坐标之间的转换关系,求得结果,第二问联立对应曲线的极坐标方程,求得对应点的极坐标,结合极径和极角的意义,结合三角形面积公式求得结果.

详解:(1)由曲线为参数),消去参数得:

化简极坐标方程为:

曲线为参数)消去参数得:

化简极坐标方程为:

(2)联立

联立

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网