题目内容
【题目】如图所示的是函数(,)在区间上的图象,将该函数图象各点的横坐标缩小到原来的一半(纵坐标不变),再向右平移()个单位长度后,所得到的图象关于直线对称,则的最小值为( )
A. B. C. D.
【答案】C
【解析】分析:由周期求出ω,由五点法作图求出的值,可得函数的f(x)的解析式.再根据函数g(x)的对称轴求出m的最小值,可得结论.
详解:由函数(,)的图象可得
T=
再由五点法作图可得 2×(﹣)+=0,∴=.
故函数f(x)的解析式为 f(x)=sin(2x+).
故把f(x)=sin(2x+)的图象各点的横坐标缩小到原来的一半(纵坐标不变),再向右平移m(m>0)个单位长度后,得到g(x)=sin(4x﹣4m+)的图象,
∵所得图象关于直线对称,
∴4×﹣4m+=+kπ,解得:m=﹣kπ,k∈Z,
∴由m>0,可得当k=1时,m的最小值为.
故答案为:C
练习册系列答案
相关题目