题目内容

【题目】在平面直角坐标系中,圆的参数方程为,(t为参数),在以原点O为极点,轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为两点的极坐标分别为.

(1)求圆的普通方程和直线的直角坐标方程;

(2)是圆上任一点,求面积的最小值.

【答案】(1);(2)4

【解析】试题分析:(1)由圆C的参数方程消去t得到圆C的普通方程,由直线l的极坐标方程,利用两角和与差的余弦函数公式化简,根据转化为直角坐标方程即可;(2)将AB的极坐标化为直角坐标,并求出|AB|的长,根据P在圆C上,设出P坐标,利用点到直线的距离公式表示出P到直线l的距离,利用余弦函数的值域确定出最小值,即可确定出三角形PAB面积的最小值.

试题解析:

(1)由消去参数t,得

所以圆C的普通方程为

,得,换成直角坐标系为

所以直线l的直角坐标方程为

(2)化为直角坐标为在直线l上,

并且,设P点的坐标为

则P点到直线l的距离为

,所经面积的最小值是

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网