题目内容

已知(m为常数,m>0且
是首项为4,公差为2的等差数列.
(1)求证:数列是等比数列;
(2)若,且数列{bn}的前n项和,当时,求
(3)若,问是否存在,使得中每一项恒小于它后面的项?
若存在,求出的范围;若不存在,说明理由.
(Ⅰ)由题意   即
                                          …………2分
      ∵m>0且,∴m2为非零常数,
∴数列{an}是以m4为首项,m2为公比的等比数列                   …………4分
(Ⅱ)由题意

   ①             …………6分
①式两端同乘以2,得
  ②       …………7分
②-①并整理,得
 

=
   …10分
(Ⅲ)由题意
要使对一切成立,即 对一切 成立,
①当m>1时, 成立;                  …………12分
②当0<m<1时,
对一切 成立,只需
解得 , 考虑到0<m<1,    ∴0<m< 
综上,当0<m<或m>1时,数列{cn}中每一项恒小于它后面的项.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网